Dance and music alter the brain in opposite ways

Fascinating research, published in the journal NeuroImage, finds distinct changes in sensory and motor pathways in the brains of dancers and musicians. However, the changes in white matter are at opposite ends of the spectrum.

In the majority of earth's most ancient cultures, dancing and music is wonderfully prevalent.

This ubiquitous desire to make music and move along to it has been carried through into modern culture.

Although some children may dread their trumpet tutorial and others would rather play their Xbox than attend ballet lessons, a new study shows that our parents were right all along.

The recent findings demonstrate that music and dance can make significant neurological changes.

Why the white matter differences?


The differences observed may be because dancers train their whole body, which has a "broader representation in the neural cortex," encouraging fibers to cross over and increase in size; whereas musicians tend to focus their training on specific body parts such as the fingers or mouth, which will have smaller cortical representations in the brain.

Another interesting result was that dancers and musicians differed more from each other than when compared with the group of untrained control subjects. This could be for a number of reasons, as Giacosa explains: " our samples of dancers and musicians were specifically selected to be pure groups of experts, which makes it easier to differentiate between them." On the other hand, the control group was a more diverse group with a range of interests and life experiences.

These results are not just interesting, they could have ramifications for education and rehabilitation. According to senior author Prof. Virginia Penhune:

"Understanding how dance and music training differently affect brain networks will allow us to selectively use them to enhance their functioning or compensate for difficulties and diseases that involve those specific brain networks."

Dance and music therapy is being investigated for its potential use in the treatment of diseases such as Parkinson's and autism. Prof. Penhune hopes that these findings will spur further research into the use of the arts in the treatment of disease.

Comments